
Implementation of Socket Programming and
RMI Using Simulating Environment

Hemant Kumar Srivastava, Rounak Sinha, Sumita Gupta

Abstract-- A network comprises of collection of nodes and the medium which connects them. These nodes are connected to each other for
the reason of data transmission, which can be in any form i.e. messages, media, function invocation etc. The data transmission can be carried
out in two modes: Synchronous transfer and Asynchronous transfer. In this expanded world where data transmission plays a vital role for
communication in any firm, it becomes very necessary to use the network intelligently for effective transmission with less traffic overhead. This
paper deals with two such techniques which can be selected according to the need of any organization. The two techniques are Socket
Programming and Remote Method Invocation. Socket Interface is one of the fundamental technologies underlying the internet. If socket
programming is implemented at hardware level, the communication between hosts will occur much faster than it is today. Socket programming
can be implemented at both hardware and software. In this paper both Socket programming and RMI have been discussed in detail and
comparative study is done between them on different parameters.
 Many papers and reviews have been published that deals with Socket programming and Remote Method Invocation (RMI). As to start off with
the survey, this paper contains the history, background and detailed description of Socket Programming and Remote method Invocation (RMI),
clearly mentioning what they are. This paper will also focuses on the comparative study of both Socket Programming and RMI , their
advantages and disadvantages, their function, how they work and different scenarios where they can be used.

Index-- Network programming, Socket programming. Remote Method Invocation, Distributed Object Technology, TCP/IP, UDP, Socket, Class,
Methods, Client, Server, Protocols, Ports, Streams, Remote, Registry, Skeleton, Stub

—————————— � ——————————

1 INTRODUCTION
he term network programming refers to writing

programs that execute across multiple devices, in

which the devices are all connected to each other

using a network. A network is all about connecting

different machines together for purpose of sharing

devices, jobs or communication. The most exciting aspect

of Java is that it incorporates an easy to use, cross

platform model for network communication. The java.net

package of J2SE APIs contains a collection of classes and

interfaces that provide low level as well as high level

communication details, allowing you to write programs

that focus on solving the problem at hand. The java.net

package supports two common network protocols:

• TCP: TCP stands for Transmission Control

Protocol, which allows for reliable

communication between two applications. TCP

is typically over the Inernet Protocol (IP), and is

referred as TCP/IP.

• UDP: UDP stands for User Datagram Protocol, a

connectionless protocol, that allows for packets

of data to be transmitted between

applications.[1]

Distributed object system means to combine networking

and object oriented programming. A distributed system

includes nodes that perform computation. A node may

be a personal computer, a mainframe or any other

device.[2] The main focuses of distributed object

technology are:

• It performs location transparency i.e. making

easy access and using remote object.

• It locates the remote class and provides a

reference to them.

• Enabling remote method call includes passing

parameter and returning values.

• Notify program for network failure or any other

problems.

RMI is simple method for developing and deploying

distributed object applications in Java environment. The

java.rmi and java.rmi.server packages contain the

interfaces and classes that define the functionality of

JAVA.RMI systems.

2 HISTORY, OVERVIEW AND DETAILED
DISCUSSION ON SOCKET PROGRAMING:
Sockets were developed in 1981 at the University of

California, Berkeley. The project was sponsored by

ARPA (Advanced Research Pojects Agency) in 1980.

Initially, in 1983, the sockets were referred as Berkeley

Sockets and were implemented on 4.2 BSD UNIX

operating system. It was also known as Berkeley

Software Distribution socket API. The main objective

T

————————————————

• Hemant Kumar Srivastava is currently pursuing B.Tech in Computer
Engineering from AmityUniversity, Noida, India, E-mail:
hemant19914@gmail.com

• Rounak Sinha is currently pursuing B.Tech in Computer Engineering
from AmityUniversity, Noida, India, E-mail:rounaks@sify.com

• Sumita Gupta, Assistant Professor, Amity University, Noida, India, E-
mail: sumitagoyal@gmail.com

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

691

IJSER

was the transport of TCP/IP software to UNIX. In 1986,

AT&T introduced the Transport Layer Interface (TLI)

with socket like functionality, which was more network

independent. UNIX includes both TLI and Sockets after

SVR4.[3]

2.1 What Exactly Is a Socket?
The notion of a socket only allows a single computer to

serve many different clients at once, as well as serving

many different types of information. This is managed by

the introduction of a port which is a numbered socket on

a particular machine. A server process is said to “listen”

to a port until a client connects to it. A server is allowed

to accept multiple clients connected to the same port

number, although each session is unique.[4] To manage

multiple client connections, a server process must be

multithreaded or must have some other means of

multiplexing simultaneous I/O.

Sockets provide the communication mechanism between

two computers using TCP. A client program creates a

socket on its end of the communication and attempts to

connect that socket to a server. When the connection is

made, the server creates a socket object on its end of the

communication. The client and server can now

communicate by writing to and reading from the socket.

The java.net.Socket class represents a socket, and the

java.net.ServerSocket class provides a mechanism for the

server program to listen for clients and establish

connections with them.

2.2 Steps for Establishing a TCP Connection
Between Two Computers Using Sockets:
Step 1: The server instantiates a ServerSocket object,

denoting which port number communication is to occur

on.

Step 2: The server invokes the accept() method of the

ServerSocket class. This method waits until a client

connects to the server on the given port.

Step 3: After the server is waiting, a client instantiates a

Socket object, specifying the server name and port

number to connect to.

Step 4: The constructor of the Socket class attempts to

connect the client to the specified server and port

number. If communication is established, the client now

has a Socket object capable of communicating with the

server.

Step 5: On the server side, the accept() method returns a

reference to a new socket on the server that is connected

to the client's socket.

After the connections are established, communication

can occur using I/O streams.[5] Each socket has both an

OutputStream and an InputStream. The client's

OutputStream is connected to the server's InputStream,

and the client's InputStream is connected to the server's

OutputStream.TCP is a two way communication

protocol, so data can be sent across both streams at the

same time.[6] There are following useful classes

providing complete set of methods to implement

sockets.

2.3 ServerSocket Class Methods:
The java.net.ServerSocket class is used by server

applications to obtain a port and listen for client

requests.[7] The ServerSocket class has four constructors:

1.public ServerSocket(int port) throws IOException

Attempts to create a server socket bound to the specified

port. An exception occurs if the port is already bound by

another application.

2.public ServerSocket(int port, int backlog) throws

IOException

Similar to the previous constructor, the backlog

parameter specifies how many incoming clients to store

in a wait queue.[8]

3.public ServerSocket(int port, int backlog,

InetAddress address) throws IOException

Similar to the previous constructor, the InetAddress

parameter specifies the local IP address to bind to. The

InetAddress is used for servers that may have multiple

IP addresses, allowing the server to specify which of its

IP addresses to accept client requests on.[7]

4.public ServerSocket() throws IOException

Creates an unbound server socket. When using this

constructor, use the bind() method when you are ready

to bind the server socket. If the ServerSocket constructor

does not throw an exception, it means that your

application has successfully bound to the specified port

and is ready for client requests.[9]

Common methods of the ServerSocket class:

1.public int getLocalPort()

Returns the port that the server socket is listening on.

This method is useful if 0 is passed as the port number in

a contructor.

2.public Socket accept() throws IOException

Waits for an incoming client. This method blocks until

either a cleint connects to server on specified port or the

socket times out assuming that the time-out value has

been set by setSoTimeout() method. Otherwise this

method blocks indefinitely.

3.public void setSocketTimeot(int timeout)

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

692

IJSER

Sets the time-out value for how long the server socket

waits for a client during the accept().

4.public void bind(SocketAddress host, int backlog)

Binds the socket to specified serverand port in the

SocketAddress object. It is used in case of no object

contructor.

When the ServerSocket invokes accept(), the method

does not return until a client connects. After a client does

connect, the ServerSocket creates a new Socket on an

unspecified port and returns a reference to this new

Socket. A TCP connection now exists between the client

and server, and communication can begin.

2.4 Socket Class Methods:
The java.net.Socket class represents the socket that both

the client and server use to communicate with each

other. The client obtains a Socket object by instantiating

one, whereas the server obtains a Socket object from the

return value of the accept() method.

The Socket class has five constructors that a client uses to

connect to a server:

1.public Socket(String host, int port) throws

UnknownHostException, IOException.

This method attempts to connect to the specified server

at the specified port. If this constructor does not throw

an exception, the connection is successful and the client

is connected to the server.

2.public Socket(InetAddress host, int port) throws

IOException

This method is identical to the previous constructor,

except that the host is denoted by an InetAddress object.

3.public Socket(String host, int port, InetAddress

localAddress, int localPort) throws IOException.

Connects to the specified host and port, creating a socket

on the local host at the specified address and port.

4.public Socket(InetAddress host, int port, InetAddress

localAddress, int localPort) throws IOException.

This method is identical to the previous constructor,

except that the host is denoted by an InetAddress object

instead of a String

5.public Socket()

Creates an unconnected socket. Use the connect()

method to connect this socket to a server.

When the Socket constructor returns, it does not simply

instantiate a Socket object but it actually attempts to

connect to the specified server and port.

Some methods of interest in the Socket class are listed

here which can be invoked by both the client and server:

1.public void connect(SocketAddress host, int timeout)

throws IOException

This method connects the socket to the specified host.

This method is needed only when you instantiated the

Socket using the no-argument constructor.

2.public InetAddress getInetAddress()

This method returns the address of the other computer

that this socket is connected to.

3.public int getPort()

Returns the port the socket is bound to on the remote

machine.

4.public int getLocalPort()

Returns the port the socket is bound to on the local

machine.

5.public SocketAddress getRemoteSocketAddress()

Returns the address of the remote socket.

6.public InputStream getInputStream() throws

IOException

Returns the input stream of the socket. The input stream

is connected to the output stream of the remote socket.

7.public OutputStream getOutputStream() throws

IOException

Returns the output stream of the socket. The output

stream is connected to the input stream of the remote

socket.

8.public void close() throws IOException

Closes the socket, which makes this Socket object no

longer capable of connecting again to any server.

2.5 InetAddress Class Methods
This class represents an Internet Protocol (IP)

address.Some methods which are required while doing

socket programming:

1.static InetAddress getByAddress(byte[] addr)

Returns an InetAddress object given the raw IP address .

2.static InetAddress getByAddress(String host, byte[]

addr)

Create an InetAddress based on the provided host name

and IP address.

3.static InetAddress getByName(String host)

Determines the IP address of a host, given the host's

name.

4.String getHostAddress()

Returns the IP address string in textual presentation.

5.String getHostName()

Gets the host name for this IP address.

6.static InetAddress InetAddress getLocalHost()

Returns the local host.

7.String toString()

Converts this IP address to a String.

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

693

IJSER

Fig. 1 depicts the stream socket operation for any

program.

2.6 Comparison Between TCP/IP And UDP
Table 1 shows the difference between TCP/IP & UDP on

different parameters

Table 1. TCP/IP Vs UDP

S.No.
Parameter TCP/IP UDP

1. Acronym

Transmission

Control

Protocol/

Internet Protocol

User

Datagram

Protocol

2. Function

Connection

bases transfer of

messages

Connectionles

s transfer of

messages

3.

Ordering

of data

packets

Rearranges in

the order

specified

No inherent

order as

packets are

independent

of each other

4.
Speed of

transfer

Slower than

UDP

Faster, as no

error checking

for packets

5. Reliability Guarantees that

data transferred

There is no

guarantee that

remains intact

and received in

same order as

sent.

messages or

packets sent

would reach at

all

6.
Header

Size
20 bytes 80 bytes

7.
Error

Checking

TCP does error

checking

Does error

checking, but

no recovery

options

8.
Acknowle

dgement

Acknowledgem

ent Segment

No

Acknowledge

ment

9. Examples

HTTP, HTTPs,

FTP, SMTP,

Telnet, etc.

DNS, DHCP,

TFTP, SNMP,

RIP, VOIP, etc.

 2.7 Sample Code Illustrating the Socket
Programming for Chat-Server in Java

2.7.1Chat Client
public class ChatClient

 {

 // Declarations

 ChatClient()

 {

//codes

 };

 private void ConnectToServer()

 {

 // code

 }

 private void SendMessageToServer(String Message)

 {

 }

 private void InitializeAppletComponents()

 { // Applet Initailization

 }

 private void LoginToChat()

 {

 ConnectToServer();

 }

 public static void main(String[] args) {

 ChatClient mainFrame = new ChatClient();

 }

}

Figure 1: Stream Socket Operation [10]

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

694

IJSER

When the code is executed, the generated output is

shown in Fig. 2

2.7.2 Chat Server

 public class ChatServer

 {

 //Declarations

 public ChatServer()

 {

 //Codes

 };

 }

 private void SendMessageToClient

 (Socket clientsocket, String message)

 {

 //Codes

 }

 public static void main(String[] args) {

 ChatServer mainFrame = new ChatServer();

 mainFrame.setVisible(true);

 }

 }

When the code on server end is executed, the generated

output is shown in Fig. 3

3 HISTORY, OVERVIEW AND DETAILED
DISCUSSION ON REMOTE METHOD
INVOCATION (RMI)
The Java RMI-IIOP specification was created to simplify

the development of CORBA applications, while

preserving all major benefits. It was developed by Sun

Microsystems and IBM, combining features of Java RMI

technology with features of CORBA technology.[11]

RMI-IIOP denotes the Java Remote Method

Invocation (RMI) interface over the Internet Inter-Orb

Protocol (IIOP), which delivers Common Object Request

Broker Architecture (CORBA) distributed computing

capabilities to the Java 2 platform. It is based on two

specifications: the Java Language Mapping to OMG IDL,

and CORBA/IIOP 2.3.1. [12]

3.1 What is RMI?
It is a technique to call a method or object of class from a

remote location. It serves as a client server relationship.

Client Object: The object whose method makes a remote

call is called client object.

Server Object: The remote object is called server object.

When a client port wants to invoke a remote method on

a remote object, it actually calls an ordinary method of

java program language i.e. encapsulated in a packaged

object called stub. It resides on client machine, not on a

Figure 2: Login Window & Chat Window

Figure 3: Server interface

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

695

IJSER

server. This packaging uses a device independent

encoding the parameter is called parameter marshalling.

A number of methods exist for developing applications

from low level socket programming to COM, DICOM,

CORBA, RMI[13]

The Java Remote Method Invocation (RMI) system

allows an object running in one Java virtual machine to

invoke methods on an object running in another Java

virtual machine. RMI provides for remote

communication between programs written in the Java

programming language.

RMI applications often comprise two separate programs,

a server and a client. A typical server program creates

some remote objects, makes references to these objects

accessible, and waits for clients to invoke methods on

these objects. A typical client program obtains a remote

reference to one or more remote objects on a server and

then invokes methods on them. RMI provides the

mechanism by which the server and the client

communicate and pass information back and forth. Such

an application is sometimes referred to as a distributed

object application.

Distributed object applications need to do the following:

• Locate remote objects. Applications can use

various mechanisms to obtain references to

remote objects. For example, an application can

register its remote objects with RMI's simple

naming facility, the RMI registry. Alternatively,

an application can pass and return remote object

references as part of other remote invocations.

• Communicate with remote objects. Details of

communication between remote objects are

handled by RMI. To the programmer, remote

communication looks similar to regular Java

method invocations.

• Load class definitions for objects that are passed

around. Because RMI enables objects to be

passed back and forth, it provides mechanisms

for loading an object's class definitions as well

as for transmitting an object's data.

3.2 RMI Architecture
As shown in Fig 5, the server calls the registry to

associate (or bind) a name with a remote object. The

client looks up the remote object by its name in the

server's registry and then invokes a method on it. The

illustration also shows that the RMI system uses an

existing web server to load class definitions, from server

to client and from client to server, for objects when

needed. The RMI architecture can be well understood by

Fig. 4

3.3 RMI Registry

3.4 Advantages of RMI

3.4.1 Object Oriented: RMI can pass full objects as

arguments and return values, not just predefined

data types. This means that you can pass complex

types, such as a standard Java hash table object, as a

single argument. In existing RPC systems you

would have to have the client decompose such an

object into primitive data types, ship those data

Figure 4: RMI layers [14]

Figure 5: RMI registry to obtain a reference to a remote
object [15]

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

696

IJSER

types, and the recreate a hash table on the server.

RMI lets you ship objects directly across the wire

with no extra client code. [16]

3.4.2 Mobile Behavior: RMI can move behavior

(class implementations) from client to server and

server to client. For example, you can define an

interface for examining employee expense reports to

see whether they conform to current company

policy. When an expense report is created, an object

that implements that interface can be fetched by the

client from the server. When the policies change, the

server will start returning a different

implementation of that interface that uses the new

policies. The constraints will therefore be checked on

the client side-providing faster feedback to the user

and less load on the server-without installing any

new software on user's system. This gives you

maximal flexibility, since changing policies requires

you to write only one new Java class and install it

once on the server host.

3.4.3 Design Patterns: Passing objects lets you use

the full power of object oriented technology in

distributed computing, such as two- and three-tier

systems. When you can pass behavior, you can use

object oriented design patterns in your solutions. All

object oriented design patterns rely upon different

behaviors for their power; without passing complete

objects-both implementations and type-the benefits

provided by the design patterns movement are lost.

3.4.4 Safe and Secure: RMI uses built-in Java

security mechanisms that allow your system to be

safe when users downloading implementations. RMI

uses the security manager defined to protect systems

from hostile applets to protect your systems and

network from potentially hostile downloaded code.

In severe cases, a server can refuse to download any

implementations at all.

3.4.5 Easy to Write/Easy to Use: RMI makes it

simple to write remote Java servers and Java clients

that access those servers. A remote interface is an

actual Java interface. A server has roughly three

lines of code to declare itself a server, and otherwise

is like any other Java object. This simplicity makes it

easy to write servers for full-scale distributed object

systems quickly, and to rapidly bring up prototypes

and early versions of software for testing and

evaluation. And because RMI programs are easy to

write they are also easy to maintain.

3.4.6 Connects to Existing/Legacy Systems:
RMI interacts with existing systems through Java's

native method interface JNI. Using RMI and JNI you

can write your client in Java and use your existing

server implementation. When you use RMI/JNI to

connect to existing servers you can rewrite any parts

of you server in Java when you choose to, and get

the full benefits of Java in the new code. Similarly,

RMI interacts with existing relational databases

using JDBC without modifying existing non-Java

source that uses the databases.

3.4.7 Write Once, Run Anywhere: RMI is part of

Java's "Write Once, Run Anywhere" approach. Any

RMI based system is 100% portable to any Java

Virtual Machine*, as is an RMI/JDBC system. If you

use RMI/JNI to interact with an existing system, the

code written using JNI will compile and run with

any Java virtual machine.

3.4.8 Distributed Garbage Collection: RMI uses

its distributed garbage collection feature to collect

remote server objects that are no longer referenced

by any clients in the network. Analogous to garbage

collection inside a Java Virtual Machine, distributed

garbage collection lets you define server objects as

needed, knowing that they will be removed when

they no longer need to be accessible by clients.

3.4.9 Parallel Computing: RMI is multi-threaded,

allowing your servers to exploit Java threads for

better concurrent processing of client requests.

3.5 Sample code illustrating the RMI

3.5.1 Interface

import java.rmi.*;

import java.rmi.server.*;

public interface remoInter extends Remote

{

public String message() throws

RemoteException;

}

3.5.2 Server
The sample code for server end is given and the

simulation of code is shown in Fig. 6

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

697

IJSER

import java.rmi.*;

import java.rmi.server.*;

public class remoServer extends UnicastRemoteObject

implements remoInter

{

 public remoServer() throws RemoteException

 {

super();

 }

 public String message() throws RemoteException

 {

return"Hello World";

 }

 public static void main(String args[])

 {

 try

 {

 remoServer r=new remoServer();

 Naming.rebind("TestServer",r);

 System.out.println("The server is ready");

 }

 catch(Exception e)

 {

 }

 }

 }

3.5.3 Client
The sample code for server end is given and the

simulation of code is shown in Fig. 7

import java.rmi.*;

import java.rmi.registry.*;

public class remoClint

{

public static void main(String args[])

{

try{

remoInter s=(remoInter)

Naming.lookup("TestServer");

System.out.println(s.message());

}

catch(Exception e)

{

}

}

}

4 MY OBSERVATIONS ON SOCKET
PROGRAMMING AND RMI
RMI enables a higher level of abstraction in

programming. It hides the details of socket server,

socket, connection, and sending or receiving data. It even

implements a multithreading server under the hood,

whereas with socket-level programming you have to

explicitly implement threads for handling multiple

Figure 6: RMI Sever

Figure 7: RMI Client

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

698

IJSER

clients. The socket API is closely related to the operating

system, and hence has less execution overhead. For

applications which require high performance, this may

be a consideration.

RMI clients can directly invoke the server method,

whereas socket-level programming is limited to passing

values. Socket-level programming is very primitive.

As an analogy, socket-level programming is like

programming in assembly language, while RMI

programming is like programming in a high-level

language.

Sockets seem easier to control, where something like

CORBA could take a lot of time to learn. RMI would

limit you to client to needing to be another JAVA

application. Programming games, chat programs,

streaming media, file transfer use sockets and read/write

bytes. SOCKETS have tighter control over what is sent,

you can optimize the streams, by buffering, or

compressing date. Reasons for using Socket

programming over RMI:

1. RMI is Strictly Java. It can’t be used with other

code outside Java. This can be fixed by using

Socket Programming.

2. Cannot guarantee that a client will always use

the same thread in consecutive calls.

3. I think it is more hackable, security needs to be

monitored more closely.

In socket programming we can handle exactly which

socket is being used, specifying TCP or UDP, handling

all formatting of messages travelling between client and

server. The best part is that it is language/platform

independent. On the other hand RMI hides much of the

network specific code and ports. RMI is mainly used for

communication between JAVA programs. A

comparative study of socket programming and RMI is

shown in the Table 2.

Table 2

Comparison between RMI & Socket programming

S.No. Parameters
Socket

Programming
RMI

1. Abstraction Low level High level

2.
Multi-

threading
Explicit Implicit

3. Platform
Platform

independent

Platform

dependent,

Strictly uses

JAVA

4.
Execution

Overhead
Less More

5. Usage

For passing

values,

messages

between Client

and Server

For invocation

for methods,

used for

communication

between JAVA

programs

6. Speed Faster
Comparatively

Slower

7. Best Suited

For

communicatio

n between

participants,

suitable for

message

transfer,

gaming,

streaming

media, file

transfer

For

communication

between

applications

8.
Handling

ports
Easy Very Difficult

9. Control
Tighter control

over sent data

Flexible, can’t

guarantee for

the usage of

same thread

10. Requirement

Not

necessarily

JAVA required

on both client

and server end

JAVA required

at both the ends

11.
Optimization

of streams
Yes No

12. Security High Moderate

13. Language Low level High level

5 CONCLUSION AND FUTURE WORK
In this paper an attempt was made to investigate in to

socket programming and remote method invocation. The

advantage of Socket Programming over RMI is

discussed. Though Socket programming is best suitable

for communication between clients and server but

advent of RMI can’t be ignored. It is also equally

important but for very specific tasks. Due to the

constraint of length and scope of the paper, Socket

programming and RMI can’t be easily summarized but

an effort had been made to show the comparison

between them. There are works done on socket

programming ever since its advent. This is proved as

Windows, Macintosh and UNIX provide interoperability

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

699

IJSER

with socket interface. Java is taking over socket

programming however the portability can’t be matched.

Keeping all aspects on the table I believe socket

programming has yet to evolve in its types and ways it

will perform in applications. All these will require the

thought to have faster and reliable transactions between

the server and clients.

6 ACKNOWLEDGEMENTS
The Success of this research work would have been

uncertain without the help and guidance of a dedicated

group of people in our institute AMITY UNIVERSITY,

Noida. We would like to express our true and sincere

acknowledgements as the appreciation for their

contributions, encouragement and support. The

researchers also wish to express gratitude and warmest

appreciation to people, who, in any way have

contributed and inspired the researchers.

REFERENCES
[1] Tanenbaum, “Computer Networks”, Second edition

[2] A. Raju,” Advanced Java”

[3] Introduction to Sockets, web.njit.edu/

~gblank/cis604/Lectures/604Sockets.ppt

[4] Q. Charatan and A. Kans, ”Java in two semesters” , 2nd

edition McGraw Hills publication,2006

[5] Introduction to Socket Programming,

http://www.cs.rutgers.edu/~pxk/rutgers/notes/sockets/index

.html

[6] J. F. Kurose and K. W Ross, “Computer Networking- A

Top-Down Approach featuring the Internet” , 2nd Edition

(Addison Wesley World Student Edition)

[7] Author P. Burden,” Socket Programming”

[8] Author G. McMillan,” Socket Programming HOWTO”

 [9] Socket Concepts:

http://publib.boulder.ibm.com/infocenter/iseries

[10] Oracle.com-

 http://docs.oracle.com/cd/E19683-01/816-

5042/6mb7bck68/index.html

[11] Wikipedia.org-

 http://en.wikipedia.org/wiki/RMI-IIOP

[12] Java SE Core Technologies – CORBA/RMI-IIOP

http://www.oracle.com/:ORACLE

[13] H. Schildt, The Complete Reference, Seventh Edition,

Chap. 27

[14] dsnet.tu-plovdiv.bg

[15] Oralce.com- docs.oracle.com

[16]http://findaccountingsoftware.com/directory/rmi-

corporation/rmi-advantage

International Journal of Scientific & Engineering Research, Volume 4, Issue 5, May-2013
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

700

IJSER

